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Abstract
Using the Lax–Sato formulation of the Manakov–Santini hierarchy, we
introduce a class of reductions such that the zero-order reduction of this
class corresponds to the dKP hierarchy, and the first-order reduction gives the
hierarchy associated with the interpolating system introduced by Dunajski. We
present the Lax–Sato form of a reduced hierarchy for the interpolating system
and also for the reduction of arbitrary order. Similar to the dKP hierarchy, the
Lax–Sato equations for L (the Lax function) split from the Lax–Sato equations
for M (the Orlov function) due to the reduction, and the reduced hierarchy for
an arbitrary order of reduction is defined by Lax–Sato equations for L only. A
characterization of the class of reductions in terms of the dressing data is given.
We also consider a waterbag reduction of the interpolating system hierarchy,
which defines (1+1)-dimensional systems of hydrodynamic type.

PACS numbers: 02.30.Ik, 02.30.Hq, 02.40.Ky

1. Introduction

In this work we construct a class of reductions of the hierarchy associated with the system
recently introduced by Manakov and Santini [1] (see also [2, 3]),

uxt = uyy + (uux)x + vxuxy − uxxvy,

vxt = vyy + uvxx + vxvxy − vxxvy,
(1)

whose Lax pair is

∂yΨ = ((p − vx)∂x − ux∂p)Ψ,

∂tΨ = ((p2 − vxp + u − vy)∂x − (uxp + uy)∂p)Ψ,
(2)
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where p plays the role of a spectral variable. The Manakov–Santini system is a generalization
of the dispersionless KP (Khohlov–Zabolotskaya) equation to the case of general (non-
Hamiltonian) vector fields in the Lax pair. For v = 0 the system reduces to the dKP equation.
Correspondingly, the reduction u = 0 gives the equation [4] (see also [5–7])

vxt = vyy + vxvxy − vxxvy. (3)

Using the Lax–Sato formulation of the hierarchy [8–10], we introduce a class of reductions
such that the zero-order reduction of this class corresponds to the dKP hierarchy, and the first-
order reduction gives a hierarchy associated with the interpolating system introduced in [11],
where it was proved that it is ‘the most general symmetry reduction of the second heavenly
equation by a conformal Killing vector with a null self-dual derivative’. In [11] it was also
shown that the interpolating system corresponds to a simple differential reduction cu = bvx

of the Manakov–Santini equation. We present the Lax–Sato form of a reduced hierarchy for
the interpolating system and also for the reduction of an arbitrary order. Similar to the dKP
hierarchy, the Lax–Sato equations for L (the Lax function) split from the Lax–Sato equations
for M (the Orlov function) due to the reduction, and the reduced hierarchy for an arbitrary
order of reduction is defined by Lax–Sato equations for L only. In terms of the Manakov–
Santini system this class defines differential reductions (not changing the dimension). A
characterization of the class of reductions in terms of the dressing data is given. We also
consider waterbag-type reductions of the reduced hierarchies (including the interpolating
equation hierarchy), which define (1+1)-dimensional systems of hydrodynamic type.

Reductions of the Manakov–Santini system were also considered in the works [12–14],
concentrating mostly on (1+1)-dimensional reductions of hydrodynamic type.

2. The Manakov–Santini hierarchy

The Manakov–Santini hierarchy is defined by the Lax–Sato equations [8–10]

∂

∂tn

(
L

M

)
=

((
LnLp

{L,M}
)

+

∂x −
(

LnLx

{L,M}
)

+

∂p

) (
L

M

)
, (4)

where L, M, corresponding to the Lax and Orlov functions of the dispersionless KP hierarchy,
are the series

L = p +
∞∑

n=1

un(t)p−n, (5)

M = M0 + M1, M0 =
∞∑

n=0

tnL
n,

M1 =
∞∑

n=1

vn(t)L−n =
∞∑

n=1

ṽn(t)p−n,

(6)

and x = t0,
(∑∞

−∞ unp
n
)

+ = ∑∞
n=0 unp

n,
( ∑+∞

−∞ unp
n
)
− = ∑n=−1

−∞ unp
n, {L,M} =

LpMx − LxMp. A more standard choice of times for the dKP hierarchy corresponds to
M0 = ∑∞

n=0(n + 1)tnL
n, and it is easy to transfer to it by rescaling of times.

Lax–Sato equations (4) are equivalent to the generating relation [8–10](
dL ∧ dM

{L,M}
)

−
= 0, (7)

where the independent variables of the differential include all the times t and a spectral
variable p.

2



J. Phys. A: Math. Theor. 43 (2010) 115206 L V Bogdanov

Equations (4) imply that the dynamics of the Poisson bracket J = {L,M} is described
by the equation [12]

∂

∂tn
ln J = (An∂x − Bn∂p) ln J + ∂xAn − ∂pBn,

An =
(

LnLp

J

)
+

, Bn =
(

LnLx

J

)
+

.

(8)

This equation together with the first equation of (4) forms a closed system which defines the
Manakov–Santini hierarchy and can be used as an equivalent to the system (4), very useful for
the description of reductions. Thus, to define the Manakov–Santini hierarchy, it is possible to
consider the equations

∂

∂tn
L = ((LnLpJ−1)+∂x − (LnLxJ

−1)+∂p)L,

∂

∂tn
ln J = ((LnLpJ−1)+∂x − (LnLxJ

−1)+∂p) ln J + ∂x(L
nLpJ−1)+ − ∂p(LnLxJ

−1)+

(9)

for the series L(p) (5) and J,

J = 1 +
∞∑
1

jn(t)L−n = 1 +
∞∑
1

j̃ n(t)p−n. (10)

The function M can be found from L and J using the relation [12]

J = {L,M} = (∂pL)∂xM|L,

where |L means that a partial derivative is taken for fixed L. Then

∂xM|L = J (∂pL)−1 = J∂Lp(L), (11)

and, introducing series for p(L) (inverse to L(p) (5)),

p = L +
∞∑
1

pn(t)L−n, (12)

it is possible to find coefficients of the series for ∂xM|L explicitly and define the function M.
For the first coefficient of the series (6) we obtain ∂xv1(t) = j1(t). In the case of Hamiltonian
vector fields J = 1 and ∂xM|L = ∂Lp(L).

Lax–Sato equations for the first two flows of the hierarchy (4)

∂y

(
L

M

)
= ((p − vx)∂x − ux∂p)

(
L

M

)
, (13)

∂t

(
L

M

)
= ((p2 − vxp + u − vy)∂x − (uxp + uy)∂p)

(
L

M

)
, (14)

where u = u1, v = v1, x = t0, y = t1, t = t2, correspond to the Lax pair (2) of the Manakov–
Santini system (1).

Equation (13) gives the recursion relations, defining the coefficients of the series L(p)

(5), M(p) (6) through the functions u, v:

∂xun+1 = ∂yun + vx∂xun − (n − 1)uxun−1, (15)

∂xṽn+1 − un = ∂yṽn + vx∂xṽn − (n − 1)uxṽn−1, n � 1, ṽ1 = v. (16)
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Using these relations, the Manakov–Santini system can be directly obtained from (14) without
the application of compatibility conditions for linear equations. It is also possible to consider
equations for ln J (9): the first two flows read

∂y ln J = ((p − vx)∂x − ux∂p) ln J − vxx, (17)

∂t ln J = ((p2 −vxp +u−vy)∂x − (uxp +uy)∂p) ln J −vxxp−vxy, (18)

and the recursion relation for ln J = ∑∞
n=1(ln J )np

−n is similar to the recursion for L(p),

∂x(ln J )n+1 = ∂y(ln J )n + vx∂x(ln J )n − (n − 1)ux(ln J )n−1,

where n � 1, (ln J )1 = vx .

3. A class of reductions connected with the interpolating system

In this section we consider a class of reductions of the Manakov–Santini hierarchy,
characterized by the existence of a polynomial solution (of order k in p) of the non-
homogeneous linear equation (8). For k = 0 this reduction corresponds to Hamiltonian
vector fields and the dKP hierarchy. For k = 1 we obtain the interpolating system [11]
hierarchy. For general k, J can be explicitly expressed through L, and the reduced hierarchy
is defined by the Lax–Sato equations for L only (similar to the dKP hierarchy).

Let ln J satisfy non-homogeneous equations (8) and L satisfy homogeneous
equations (4); then the function ln J + F(L) also satisfies equations (8). We define a class of
reductions of the Manakov–Santini hierarchy by the condition

(ln J − αLk)− = 0, (19)

where α is a constant, which means that equations (8) have an analytic solution (ln J − αLk).
This condition defines a reduction because An, Bn in equations (8) are polynomials, and
the dynamics, defined by these equations, preserves analyticity of the functions, so analytic
solutions form an invariant manifold. Thus, if (ln J − αLk)(x, p) is polynomial with respect
to p at the initial point in higher times, then it is polynomial for arbitrary values of higher
times.

Reduction (19) is completely characterized by the existence of a polynomial solution of
equations (8).

Proposition 1. The existence of a polynomial solution

f = −αpk +
i=k−2∑

0

fi(t)pi

(where the coefficients fi do not contain constants, see below) of equations (8),
∂

∂tn
f = (An∂x − Bn∂p)f + ∂xAn − ∂pBn, (20)

is equivalent to the reduction condition (19).

Proof. First, the reduction condition (19) directly implies that f = (ln J−αLk) is a polynomial
solution of equations (20) of the required form; thus, the existence of a polynomial solution is
necessary.

To prove that it is sufficient, we note that F = ln J −f solves homogeneous equations (20)
(equations (4)). Let us expand p into the powers of L (12), and represent F in the form

F = αLk +
i=k−2∑
−∞

Fi(t)Li,
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where Fi(t) can be expressed through fi(t) and coefficients of expansion of J and L
(respectively, jn(t) and un(t)). It is easy to check that F solves homogeneous equations (20)
iff all the coefficients Fi(t) are constants. Suggesting that the coefficients fi of the polynomial
f (p) do not contain constants (in the sense that they are equal to zero if all the coefficients
jn = un = 0), we come to the conclusion that ln J − f = αLk . �

The simplest case k = 0 corresponds to Hamiltonian vector fields. Indeed, in this case
J = 1, and from equations (8) we have

∂xAn − ∂pBn = 0.

In the case k = 1

(ln J − αL)− = 0 ⇒ (ln J − αL) = (ln J − αL)+ = −αp,

J = exp α(L − p).
(21)

So, similar to the case of Hamiltonian vector fields, the equation for L splits off and the reduced
hierarchy is defined by the Lax–Sato equations

∂

∂tn
L = (eα(p−L)LnLp)+∂xL − (eα(p−L)LnLx)+∂pL. (22)

The generating relation for the reduced hierarchy reads

(eα(p−L)dL ∧ dM)− = 0,

or, equivalently,

(e−αLdL ∧ dM)− = 0.

Representing relation (21) as a series in p−1, in the first nontrivial order we obtain (see (11))

αu = j1 = vx, (23)

which is exactly the condition used in [11] to reduce the Manakov–Santini system to the
interpolating equation (α = c

b
in the notation of [11]). The Manakov–Santini system (1) with

the reduction (23) is equivalent to the interpolating equation up to a simple transformation,
and we will call the hierarchy (22) the interpolating equation hierarchy.

The reduction condition (21) implies that (−αp) is a solution of equations (8) (in fact,
these conditions are equivalent), and, substituting it, we obtain the reduction equations in
terms of vector field components:

∂xAn − ∂pBn − Bn = 0. (24)

It is easy to check that for n = 1 we obtain the reduction condition (23).

3.1. General k

In the general case

(ln J − αLk)− = 0 ⇒ (ln J − αLk) = (ln J − αLk)+ = −α(Lk)+,

J = exp α
(
Lk − (

Lk
+
)) = exp α(Lk−),

(25)

and Lax–Sato equations of reduced hierarchy read

∂

∂tn
L = (e−α(Lk−)LnLp)+∂xL − (e−α(Lk−)LnLx)+∂pL. (26)

These equations imply equations (9) for J (25), and the function M is defined by relation (11),

∂xM|L = J (∂pL)−1 = eα(Lk−(Lk
+))(∂pL)−1.

5
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Generating relation (7) in this case takes the form(
e−αLk

dL ∧ dM
)
− = 0. (27)

Reduction (25) is equivalent to the condition that (−αLk
+) is a solution to equations (8),

which gives a differential characterization of the reduction in terms of the Manakov–Santini
hierarchy:

∂

∂tn

(
αLk

+
) = (An∂x − Bn∂p)

(
αLk

+
) − ∂xAn + ∂pBn,

An =
(

LnLp

J

)
+

, Bn =
(

LnLx

J

)
+

.

(28)

For the first flow n = 1 we obtain a condition (compare (17))

∂y

(
αLk

+
) = ((p − vx)∂x − ux∂p)

(
αLk

+
)

+ vxx. (29)

This condition defines a differential reduction of the Manakov–Santini system.
Let us consider in more detail the case k = 2. A reduction is defined by relation (25),

J = eα(L2−). (30)

Taking an expansion into powers of p−1, in the first nontrivial order we obtain

j1 = 2αu2.

Using the recursion formula (15), we obtain

∂xu2 = uy + vxux.

Thus, we come to the conclusion that in terms of the Manakov–Santini system (1) reduction
(30) leads to a condition

2α(uy + vxux) = vxx. (31)

This condition defines a differential reduction of the Manakov–Santini system.
Another way to obtain the reduction is to use relation (29). Indeed,

(
L2

+
) = p2 + 2u, and,

substituting this expression into (29), we obtain

2αuy = 2α((p − vx)ux − uxp) + vxx ⇒ 2α(uy + 2vxux) = vxx.

Relation (29) gives differential reductions of arbitrary order k for the Manakov–Santini system
in explicit form.

For illustration we will also calculate a differential reduction of the Manakov–Santini
system of the order k = 3. In this case

(
L3

+
) = p3 + 3pu + 3u2, and, substituting this

expression into (29), we obtain

3α(∂y(uy + uxvx) + ∂x(uyvx + uxv
2
x + uux)) = vxxx. (32)

3.2. A pair of reductions with different k—reduction to (1+1)

If we consider a pair of reductions with different k, we obtain a closed (1+1)-dimensional
system of equations for the functions u, v. First let us consider reductions of the interpolating
system, i.e. the reduction with k = 1, which leads to condition (23), together with reduction
(19) of some order k �= 1 (with a constant β).

For k = 2, using (19) and (31), we obtain a system

uy + vxux = (2β)−1vxx, vx = αu,

6
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which implies a hydrodynamic-type equation (Hopf-type equation) for u:

uy + αuux = α

2β
ux.

The system for k = 3 reads (see (32))

∂y(uy + uxvx) + ∂x

(
uyvx + uxv

2
x + uux

) = 3β−1vxxx, vx = αu,

which implies an equation for u,

uyy + ∂x

(
2αuyu + α2uxu

2 + uux − α

3β
ux

)
= 0,

which can be rewritten as a system of hydrodynamic type for two functions u, w,

wy =
(

α

3β
− α2u2 − u

)
ux − 2αuwx, uy = wx.

A system of equations of hydrodynamic type corresponding to the reduction of interpolating
system of arbitrary order k > 3 can be obtained using the observation that f = βLk

+ − αp is
a solution of the linear equation

∂yf = (p − αu)∂xf − ux∂pf,

which provides a system of hydrodynamic type for the coefficients of the polynomial
f = βpk + kβupk−2 − αp +

∑k−3
i=0 fip

i , namely

∂yu = (kβ)−1∂xfk−3 − αu∂xu,

∂yfk−3 = ∂xfk−4 − αu∂xfk−3 − k(k − 2)∂xu,

∂yfi = ∂xfi−1 − αu∂xfi − (i + 1)fi+1∂xu, 0 < i < k − 3,

∂yf0 = −αu∂xf0 − (f1 − α)∂xu.

Let us also consider a simple example of a system defined by two reductions of higher
order, taking reductions of order 2 (31) and of order 3 (32),

uy + vxux = (2α)−1vxx,

(∂y(uy + uxvx) + ∂x(uyvx + uxv
2
x + uux)) = (3β)−1vxxx.

This system can be rewritten as a system of hydrodynamic type for the functions u, w = vx :

uy + wux = (2α)−1wx,

wy = 2α

3β
wx − wwx − 2αuux.

4. A waterbag reduction for the interpolating system hierarchy

For the class of reduced hierarchies defined by Lax–Sato equations (26) it is possible to
consider a manifold of solutions of the form

L(p, x) = p −
N∑

i=1

ci ln(p − wi(x)),

N∑
i=1

ci = 0, (33)

where ci are some constants. Due to the fact that coefficients of vector fields in equations (26)
are polynomial, and the ‘plus’ projection of the equations is identically zero by construction,
it is straightforward to demonstrate that this manifold is invariant under the dynamics, so it
defines a reduction (this type of reduction is known for the dKP hierarchy as a waterbag
reduction). Each of Lax–Sato equations (26) in this case is equivalent to the closed
(1+1)-dimensional system of equations for the functions wi .

7



J. Phys. A: Math. Theor. 43 (2010) 115206 L V Bogdanov

Let us study in more detail the waterbag reduction for the interpolating equation hierarchy
(22). The first two Lax–Sato equations of the hierarchy read

∂yL = (p − αu)∂xL − ux∂pL,

∂tL = (p2 − αup − αu2 + u)∂xL − (uxp − αuux + ∂xu2)∂pL.
(34)

For the Lax–Sato function (33) the coefficients of expansion un are expressed through the
functions wi as

un =
N∑

i=1

ci

n
wn

i . (35)

Substituting the ansatz (33) into the Lax–Sato equations (34) and using (35), we obtain two
closed (1+1)-dimensional systems of equations for the functions wi:

∂ywi =
(

wi − α

N∑
i=1

ciwi

)
∂xwi + ∂x

N∑
i=1

ciwi,

∂twi =
(

w2
i − αwi

N∑
i=1

ciwi − α

N∑
i=1

ci

2
w2

i +
N∑

i=1

ciwi

)
∂xwi (36)

+

(
wi − α

N∑
i=1

ciwi

)
∂x

N∑
i=1

ciwi + ∂x

N∑
i=1

ci

2
w2

i .

These systems (as well as higher flows) are compatible, because they are constructed as a
reduction of the flows of the Manakov–Santini hierarchy to the invariant manifold (33). On
the invariant manifold equations (36) are equivalent to the Lax–Sato equations of the Manakov–
Santini hierarchy. Equations (36) are (1+1)-dimensional systems of hydrodynamic type, and
their common solution gives a solution of the interpolating system (the Manakov–Santini
system (1) with the reduction αu = vx) by the formula

u =
N∑

i=1

ciwi.

In the case α = 0 equations (36) give the waterbag reduction of the dKP hierarchy [15] (to
match (36) to the formulae of the work [15], it is necessary to rescale the times).

The minimal number of components wi in equations (36) is 2, and for the simplest
case N = 2, L(p, x) = p − c ln p−w1(x)

p−w2(x)
, an explicit form of the hydrodynamic-type system

corresponding to the first flow of (36) is

∂yw1 = ∂x

(
1

2
w2

1 + c(w1 − w2)

)
− αc(w1 − w2)∂xw1,

∂yw2 = ∂x

(
1

2
w2

2 + c(w1 − w2)

)
− αc(w1 − w2)∂xw2,

and the second flow reads

∂tw1 = ∂x

(
1

3
w3

1 + cw1(w1 − w2) +
c

2

(
w2

1 − w2
2

))

−α

(
cw1(w1 − w2)∂xw1 +

c2

2
∂x(w1 − w2)

2

)
,

∂tw2 = ∂x

(
1

3
w3

2 + cw2(w1 − w2) +
c

2

(
w2

1 − w2
2

))

−α

(
cw2(w1 − w2)∂xw2 +

c2

2
∂x(w1 − w2)

2

)
.

8
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The Zakharov reduction, corresponding to rational L with simple poles, can be considered as
a degenerate case of the waterbag reduction, in the limit when pairs of functions wi coincide.
In the two-component case, considering the limit c → ∞, w1 − w2 = c−1u, we obtain
L = p + u

p−w
, and the equations of the reduced hierarchy can be obtained as a limit of

equations for the waterbag reduction. For the first two flows

∂yw = ∂x

(
1
2w2 + u

) − αu∂xw,

∂yu = ∂x(wu) − αu∂xu,

and

∂tw = ∂x

(
1
3w3 + 2wu

) − α
(
wu∂xw + 1

2∂xu
2) ,

∂tu = ∂x(w
2u + u2) − αu∂x(wu).

A common solution of these systems gives a solution u of the interpolating equation.

5. The characterization of reductions in terms of the dressing data

A dressing scheme for the Manakov–Santini hierarchy can be formulated in terms of two-
component nonlinear Riemann–Hilbert problem on the unit circle S in the complex plane of
the variable p,

Lin = F1(Lout,Mout), Min = F2(Lout,Mout), (37)

where the functions Lin(p, t),Min(p, t) are analytic inside the unit circle, the functions
Lout(p, t),Mout(p, t) are analytic outside the unit circle and have an expansion of the form
(5), (6). The functions F1, F2 are suggested to define (at least locally) a diffeomorphism of the
plane, F ∈ Diff(2), and we call them the dressing data. It is straightforward to demonstrate
that the problem (37) implies the analyticity of the differential form

�0 = dL ∧ dM

{L,M}
(where the independent variables of the differential include all the times t and p) in the
complex plane and the generating relation (7), thus defining a solution of the Manakov–
Santini hierarchy. Considering a reduction to the group of area-preserving diffeomorphisms
SDiff(2), we obtain the dKP hierarchy.

To obtain the interpolating system, it is necessary to consider a more general class of
reductions. Let G1(λ, μ),G2(λ, μ) define an area-preserving diffeomorphism, G ∈ SDiff(2),∣∣∣∣D(G1,G2)

D(λ,μ)

∣∣∣∣ = 1.

Let us fix a pair of analytic functions f1(λ, μ), f2(λ, μ) (the reduction data) and consider a
problem

f1(Lin,Min) = G1(f1(Lout,Mout), f2(Lout,Mout)),

f2(Lin,Min) = G2(f1(Lout,Mout), f2(Lout,Mout)),
(38)

which defines a reduction of the MS hierarchy. In terms of the Riemann problem for the MS
hierarchy (37), which can be written in the form

(Lin,Min) = F(Lout,Mout), (39)

the reduction condition for the dressing data reads

f ◦ F ◦ f−1 ∈ SDiff(2). (40)

9
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In terms of equations of the MS hierarchy the reduction is characterized by the condition

(df1(L,M) ∧ df2(L,M))out = (df1(L,M) ∧ df2(L,M))in;
thus, the differential form

�red = df1(L,M) ∧ df2(L,M)

is analytic in the complex plane, and the reduced hierarchy is defined by the generating relation

(df1(L,M) ∧ df2(L,M))− = 0.

Taking

f1(L,M) = L, f2(L,M) = e−αLn

M, (41)

we obtain the generating relation(
e−αLk

dL ∧ dM
)
− = 0,

coinciding with (27). Thus, we come to the following conclusion.

Proposition 2. In terms of the dressing data for the problem (39), a class of reductions (19)
is characterized by condition (40), where f is defined by (41).

For the interpolating equation we have f1 = L, f2 = e−αLM , and the Riemann problem
(38) can be written in the form

Lin = G1(Lout, e−αLoutMout),

Min = eαG1(Lout,e−αLout Mout)G2(Lout, e−αLoutMout),

where G ∈ SDiff(2).
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